FACULTY OF ENGINEERIGN AND SCIENCE

EXAM

Course code: ENE410
Course name: Fluid Dynamics and Hydro Power
Date: December 5, 2016
Duration: 4 hours

Number of pages incl. front page: 9

Resources allowed: All written and handwritten material, pocket calculator
Notes: 6 problems

EXAM ENE410 - Fluid Dynamics and Hydro Power

Problem 1

A recorded series of maximum values of instantaneous (peak) discharge is given in the table below.
Knowing that Gumbel's law is the statistical law that best fits the data series, compute:
a) the maximum peak discharge for the return period of 100 years;
b) the return period corresponding to a peak discharge of $841.8 \mathrm{~m}^{3} / \mathrm{s}$.

Year	Peak discharge $\left(\mathbf{m}^{\mathbf{3}} / \mathbf{s}\right)$
$2002 / 03$	1000
$2002 / 06$	950
$2002 / 12$	900
$2002 / 05$	800
$2002 / 09$	750
$2002 / 08$	700
$2002 / 04$	650
$2002 / 07$	600
$2002 / 11$	500
$2002 / 10$	300

©

Problem 2

A unit hydrograph corresponding to a unitary precipitation (1 mm) with duration equal to 1 hour is presented in the table.

UNIT HYDROGRAPH	
Time $\boldsymbol{t}(\mathbf{h})$	Discharge $\boldsymbol{Q}\left(\mathbf{m}^{\mathbf{3}} \mathbf{s}\right)$
0	0
1	10
2	20
3	15
4	10
5	5
6	0

Two rainfall events (rainfall 1 and 2) with same total duration (2 hours) and amount of precipitation (40 mm) have the following temporal distributions.

Determine which rainfall event originates the maximum peak discharge.

©

Problem 3

A hydropower plant uses, under a constant net head of 30.5 m , a discharge between $8.5 \mathrm{~m}^{3} / \mathrm{s}$ and $28.3 \mathrm{~m}^{3} / \mathrm{s}$. In these conditions, determine:
a) the most appropriate turbine and the minimum operating efficiency;
b) the turbine main characteristics $\left(n_{s}, n, p\right.$ and $\left.P_{\text {turbine }}\right)$.

T] UNIVERSITY OF AGDER

Problem 4

A cylindrical inflatable rubber dam with 5 m radius and 20 m wide is installed on a river, creating a water reservoir on its left side and having no water on the right side (see figure). In these conditions determine:
a) the horizontal impulsion (hydrostatic force) on the dam;
b) the vertical impulsion (hydrostatic force) on the dam.

C ${ }^{\top}$] UNIVERSITY OF AGDER

Problem 5

Reservoir A can supply turbines 1 and 2 (both with efficiency equal to 80%). Turbine 1 discharges into reservoir C and turbine 2 discharges into reservoir D . All pipes are made of cast iron ($Q=30.4 D^{2.633} S_{f}^{0.51}$). All information concerning the reservoir levels and the length and diameter of the conduits are given in the figure. The discharge from reservoir A is equal to $500 \mathrm{l} / \mathrm{s}$. Neglecting the minor head losses and assuming $\alpha=1$, determine:
a) the net head and power of turbine 1 when turbine 2 is not operating;
b) the discharges used in turbine 1 and turbine 2 (i.e. $Q_{\underline{B C}}$ and $Q_{\underline{B D}}$) for having a total power $P_{\text {turbine } 1}+P_{\text {turbine } 2}=580 \mathrm{~kW}$, maintaining the discharge from reservoir A equal to $500 \mathrm{l} / \mathrm{s}$.

Turbine 2

Problem 6

A hydropower system has a conveyance channel connecting the intake to a forebay, as shown in the figure. The discharge is controlled by a vertical sluice gate (A) in the intake. The gate has a contraction coefficient of 0.7 . The levels in the intake and in the forebay are constant. The conveyance channel has a rectangular cross-section with 3 m width, is made of concrete ($n=0.01 \mathrm{~m}^{-1 / 3} \mathrm{~s}$) and has a length of 3.2 km , which is long enough to reach uniform flow conditions. In these conditions:
a) determine the opening of the gate to have a discharge of $10 \mathrm{~m}^{3} / \mathrm{s}$ (assume that the flow depth downstream the gate is the one of the vena contracta, i.e. that if an hydraulic jump occurs downstream the gate it is free);
b) verify if channel $A B$ has mild or steep slope and if the assumption of a free hydraulic jump downstream the gate is correct;
c) determine the flow depths upstream and downstream the hydraulic jump;
d) draw qualitatively the free-surface profile along the channel indicating the types of gradually varying flow (GVF) curves.

C]I UNIVERSITY OF AGDER

Formulae

$\pi=\gamma A h_{0}$

$$
p_{\text {atm }}^{\text {absolute }}=1.01325 \times 10^{5} \mathrm{~Pa}
$$

$\frac{p}{\gamma}+z=$ constant
$X=x_{0}+\frac{I_{G G^{\prime}}}{A x_{0}}$
$\pi_{h}=\gamma A_{\text {proj }} h_{0_{\text {proj }}}$
$\pi_{v}=\gamma \forall$
$\operatorname{Re}=\frac{U D}{v}$
$\vec{M}_{\text {in }}-\vec{M}_{\text {out }}+\vec{I}+\vec{G}+\vec{\pi}=0$
$H=\frac{p}{\gamma}+z+\alpha \frac{U^{2}}{2 g} \quad h_{f}=f \frac{L}{D} \frac{U^{2}}{2 g} \quad h_{f}$
$-2 \log _{10}\left(\frac{\varepsilon}{3.7 D}+\frac{2.51}{\operatorname{Re} \sqrt{f}}\right) \quad h_{m}=K \frac{U^{2}}{2 g}$
$P_{t}=\eta P_{\text {flow }}=\eta \gamma Q H_{\text {net }}$
$P_{\text {pump }}=\frac{P_{\text {flow }}}{\eta}=\frac{\gamma Q H_{t}}{\eta}$
$E=h+\alpha \frac{U^{2}}{2 g}$
$h_{c}=\sqrt[3]{\frac{Q^{2}}{g b^{2}}}$
$R_{h}=\frac{A}{P}$
$Q=\frac{1}{n} S R_{h}^{2 / 3} S_{f}^{1 / 2}$
$Q_{0}=\sqrt{g} S\left(h_{c}\right) \sqrt{\frac{S\left(h_{c}\right)}{b\left(h_{c}\right)}}$
$Q=C b \sqrt{2 g} H^{3 / 2}$
$M=\alpha^{\prime} \rho U^{2} S=\alpha^{\prime} \rho Q U=\alpha^{\prime} \rho \frac{Q^{2}}{S}$
$h_{v c}=C h_{\text {opening }}$
$m=\frac{h_{2}^{\prime}}{h_{2}}$
$T_{X}(\chi)=\frac{1}{1-F_{X}(\chi)} \quad \bar{x}=\sum_{i=1}^{n} x_{i} / n \quad \sigma_{x}=\sqrt{\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} /(n-1)}$
$C_{a}=\frac{n \sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{3}}{(n-1)(n-2) \sigma_{x}^{3}}$
$p \cdot n=60 f$

$$
h_{s \max }=\frac{p_{a t m}}{\gamma}-\frac{p_{v}}{\gamma}-\sigma H \quad \sigma=0.625\left(\frac{n_{s[\mathrm{~m}, \mathrm{~kW}]}}{380.78}\right)^{2} \quad n_{s}=n \frac{P^{1 / 2}}{H^{5 / 4}}
$$

$1 \mathrm{ft} \approx 0.3048 \mathrm{~m}$

STATISTICAL LAWS	
NORMAL	
LOG-NORMAL (GALTON)	$x=e^{\left(\bar{y}+K_{N} \sigma_{y}\right)} \quad y=\ln (x) \quad y=\bar{y}+K_{N} \sigma_{y}$
GUMBEL	$x=\bar{x}+K_{G} \sigma_{x} \quad K_{G}=-\frac{\sqrt{6}}{\pi}\left(0,5772+\ln \left[\ln \left(\frac{T}{T-1}\right)\right]\right)$
PEARSON III	$\begin{aligned} & x=\bar{x}+K_{I I I} \sigma_{x} \\ & \quad K_{I I I}=K_{N}+\left(K_{N}{ }^{2}-1\right)\left(\frac{C_{a}}{6}\right)+\frac{1}{3}\left(K_{N}{ }^{3}-6 K_{N}\right)\left(\frac{C_{a}}{6}\right)^{2}-\left(K_{N}{ }^{2}-1\right)\left(\frac{C_{a}}{6}\right)^{3}+K_{N}\left(\frac{C_{a}}{6}\right)^{4}+\frac{1}{3}\left(\frac{C_{a}}{6}\right)^{5} \end{aligned}$

$\bar{\epsilon} \bar{\sigma}$ UNIVERSITY OF AGDER

